Na przykład, jeśli indeks wynosi 2 (pierwiastek kwadratowy), to musisz pogrupować liczby pierwsze w potęgach z wykładnikiem 2, do tego wymagane jest, aby istniały dwie liczby pierwsze o tej samej wartości. Jeśli indeks wynosi 3 (do pierwiastka sześciennego), to potrzebujesz trójki, aby odsunąć liczbę pierwszą od pierwiastka. 3. To jest to samo, co 5 do potęgi ¼, razy (a⁴) do potęgi ¼, razy (b¹²) do potęgi ¼. Nie wiem, ile to jest 5 do potęgi ¼, więc zostawiam pierwiastek. Mogłoby zostać 5 do ¼; to nie jest nieuproszczone. Pierwiastki sześcienne to pierwiastki trzeciego stopnia, czyli takie, które po podniesieniu do sześcianu dają daną liczbę. Pierwiastki ogólne to pierwiastki dowolnego stopnia. W przypadku pierwiastków kwadratowych i sześciennych istnieją wzory umożliwiające ich obliczenie. stdN.

pierwiastek 3 stopnia z 5 do potęgi 3